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Abstract. The critical dimensions xcH(q) of the chiral and xcB(q) of the cubic operator 
in the two-dimensional q-state Potts model satisfy the extended scaling relations xCH = 
( n 2 -  y2)/(4x)  + x  and xCB = (m2- y2) / (4x)+x with x +  y = 2 , 2  cos (77y/2) =Jq, n an odd 
and m an even integer; n = 1 and m = 0 give the leading exponents. At q = 3 xCH is 
relevant, but takes the special value xT+ 1 = 9/5. The crossover exponent at the percolation 
point in the bond-diluted random king model, determined by xcs at q = 1 ,  is equal to 
one. Along the Baxter line in the Ashkin-Teller, eight-vertex and ANNNI model xCH = 

+/4+1/xT.  

The exact values of the chiral and cubic crossover exponents are obtained in the two 
dimensional Potts model and along the Baxter line in the eight-vertex, Ashkin-Teller, 
and ANNNI model. First it is explained why chiral symmetry breaking is considered, 
next the implications of the extended scaling relations are discussed, and finally their 
derivation is sketched. 

An He monolayer adsorbed on graphite (Tejwani et a1 1980), and an H monolayer 
adsorbed on Fe( l l0)  (Imbihl et a1 1982), are examples of experimental systems with 
phase transitions described by the three-state Potts model. The Bloch walls in the 
Potts model represent domain walls in the monolayer. Divide the substrate into cells, 
take the cell size similar to the domain wall width, and let Potts spins 8=27rn/q  
represent the q = 3 commensurate states of the monolayer in the cells. In the conven- 
tional Potts model all types of Bloch walls cost the same energy. In the monolayer 
however there will be an energy difference d E  between anti-clockwise walls, de,= 
OS+2- Os = -27r/q, and clockwise walls, de, = 27r/q. The chiral field d E  couples to the 
chemical potential, i.e. (like the fugacity of vacancies) is conjugate to the monolayer 
density. The phase diagram contains four types of phase. Incommensurate fluids have 
a finite correlation length 6, and a modulation in the correlation functions with pitch 
Q. In commensurate fluids, Q is commensurate with the substrate periodicity, and 
the diffraction peaks are locked-in at commensurate positions. The distinction becomes 
obscure when [= Q-'. The incommensurate floating solid phase also has an incom- 
mensurate pitch, but now because dislocations in the domain wall network are bound 
in pairs, and because meander (and/or breathing) fluctuations are massless, [ is infinite. 
Commensurate solids have an order parameter at commensurate Q and a finite 6. 

Most transitions between these four phases are understood. The scaling properties 
at commensurate solid-fluid phase boundaries are known (for a review see Schick 
1981). Melting of the Ic-floating solid into the Ic-fluid belongs to the same universality 
class as melting on a smooth substrate. The transition between a commensurate solid 

0305-4470/84/050295 +06$02.25 @ 1984 The Institute of Physics L295 



L296 Letter to the Editor 

and an Ic-floating solid is a Pokrovski-Talapov (1979) transition for striped phases 
and a first-order transition (Villain 1980) for honeycomb domain wall networks. 
ic-fluids are separated from commensurate fluids by disorder lines (see e.g. Emery 
and Peschel 1981). 

Ic-fluids and Ic-floating solids only differ in the shape of their diffraction peaks. 
The incommensurate phase reported by Jaubert et a1 (1981) in Xe adsorbed on copper 
probably is an Ic-fluid, and the c-I transition must be a disorder line. At the disorder 
line the pitch vanishes with the same exponent p = ;as at a Pokrovski-Talapov transition 
(den Nijs 1984). 

However, the nature of a direct phase boundary between an Ic-fluid and c-solid 
is not yet resolved. Such transition is absent in the limit where one type of domain 
wall dominates ( d E  >>0), and the system can be described by a fermion quantum field 
theory (for a review see den Nijs 1984). Numerical evidence (Howes er al 1983, 
Howes 1983) for the chiral three-state Potts model (Ostlund 1981) indicates that the 
Kosterlitz-Thouless and Pokrovski-Talapov transition line for large d E  merge at a 
Lifshitz point and that a single phase transition line remains for 0 < d E  < dEL. In the 
self-dual version of the chiral three-state Potts model, the Lifshitz point is located at 
d E L = 2 ,  and also its scaling properties are known exactly. Its thermodynamic 
exponents are identical to those at d E  = 0, while scaling is anisotropic; along the 
walls diverges with an Ising exponent VI; = 1 (Howes et a1 1983). The argument by 
Bohr et a1 (1984) for the absence of a Lifshitz point actually only implies that dE,+ 0 
in a system where the energy of dislocations goes to infinity. Within the numerical 
accuracy the exponents along the critical line 0 < d E  < dEL are the same as at d E  = 0 
(Howes et a1 1983, Howes 1983). The behaviour of the pitch at the fluid side is not 
resolved. The two possibilities are. (a) This is a commensurate melting line, the fluid 
is commensurate and only at higher temperatures becomes incommensurate via a 
disorder line. (b) This is a direct phase boundary between the commensurate solid 
and the incommensurate fluid, and the critical exponent xQ for the pitch Q - &-xQ 
has to be determined. Huse and Fisher (1982) expect for uniaxial systems xQ = 1. 

The value of the chiral crossover exponent obtained here, determines the stability 
of the model at d E  = 0 with respect to chirality. Consider the chiral pair correlation 
function in the Potts model at d E  =0, 

with GDD(r) = (( 1 - &e*,o)(l- 6des,,o)) the energy-energy correlation function, and 
GCB(r) the cubic correlation function defined in (4). At criticality GCH(r) decays as 
a powerlaw r - 2 * C H .  As shown below xCH satisfies the extended scaling relation 

X C H  = ( n 2 -  y2)/(4X) + x (2) 
for q =s 4, with x = 2 - y ,  2 cos( .rry/2) = Jq,  and n an odd integer; n = 1 gives the leading 
exponent. (2) applies both to uniaxial and isotropic chirality. The cubic component 
in (1) is sub-dominant except at q = 4 (see below). The chiral operator OCH is irrelevant 
along the entire tri-critical branch (-1 d y < 0), and vanishes at q = 2 critical points. 
So for small d E  # 0 the model flows under scaling to d E  = 0; the phase boundary 
remains a commensurate melting transition (possibility a ) .  

At q = 3 critical points OcH is relevant, xcH =:; both possibilities (a) and (b) are 
still allowed. However, x becomes equal to the critical dimension x,+ 1 = f of the 
gradient of the energy operator, dO,/ds, and also xv associated to vacancies does not 
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introduce a new independent exponent, xv = XT+2 (Nienhuis 1982). A similar lock-in 
of exponents takes place along the Baxter line at the point where the eight-vertex 
model decouples into two Ising models (see e.g. Kadanoff and Brown 1979). There 
the singularities can be described by a reduced set of operators. So one might speculate 
that along the entire critical line 0 < d E  < dEL the scaling behaviour is the same as at 
d E  = 0 except for an increasing dOD/ds component. The latter might introduce the 
pitch at the fluid side. This would imply xQ 3 5, i.e. that the correlation length diverges 
slower than the inverse pitch. Recall that, in the Ic-floating solid, the pitch Q, the 
displacement of the diffraction peaks QDF, and the surplus of clockwise walls QCH= 

( OCH) all scale as a length, xQ = xDF = xCH = 1 ; some walls form droplets which do not 
contribute to the modulation (QCH > Q), but do not affect the scaling behaviour because 
free dislocations are absent. Along the 0 < d E  < dEL critical line only the inequality 
xQ 3 xCH remains, because it might be that droplets form at all length scales. xQ 3 p 
implies the presence of a disorder line like region in the fluid where 5- Q-', and 
confirms that the exponents have the d E  = 0 values; in the scaling limit no modulation 
remains within the correlation length. This also agrees with the hard hexagon model 
where xQ = 2 and the exponents have the d E  = 0 three-state Potts values (Baxter and 
Pearce 1982, Huse 1984). In Kr adsorbed on graphite, the misfit of the diffraction 
peaks vanishes as lAp11'3 (Chinn and Fain 1977); this may indicate xQ = $, but more 
recent experiments (Stephens et a1 1983) suggest to me a disorder line, or xg > 1 with 
a disorder line like cross-over region in the fluid where 6-  Q-'. 

Along the Baxter line in the eight-vertex, Ashkin-Teller and ANNNI model, xCH 
satisfies the extended scaling relation 

XCH = xT/4 + 1/ XT. (3) 

(3) agrees with (2) at the point where the Baxter line intersects the four-state Potts 
model (xT= l / x ) .  

In cubic symmetry breaking the q states are divided in n groups each containing 
m = q / n  states. Bloch walls between domains of the same group and different groups 
get different energy. As shown below the critical dimension xCB in the cubic pair 
correlation function 

satisfies the extended scaling relation 

XCB = ( m 2  - y2)/(4x) + x ( 5 )  

with m an even integer and m = 0 the leading exponent. OCB is irrelevant at 4 < 4. 
At q = 4, OCB is marginal and generates the Baxter line in the Ashkin-Teller model 
(see e.g. Kohmoto et a1 1981). Since OCH includes a cubic component, see ( l ) ,  there 
will also be a Baxter line in the chiral four-state Potts model. The exponents will vary 
continuously with d E  until xT = 4 - 2d3, where (see (3)) xCH becomes relevant. 

Finally a quite different application: the crossover at the percolation point in the 
bond-diluted random Ising model is governed by the cubic operator at q = 1 (see e.g. 
Domany 1978). The crossover exponent is equal to one, because xcB(1) = xT(l)  =:. 

Now follows a brief sketch of the derivation of equations (2), (3)  and (5). At 
d E  = 0 the Potts model can be reformulated as a six-vertex Coulomb gas. Earlier, 
the energy (Black and Emery 1981), magnetic (den Nijs 1983) and vacancy-umklapp 
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(Nienhuis 1982, den Nijs 1981) excitations have been identified with spin-wave charges 
Q = (S, 0). At criticality the Coulomb gas consists of two condensator plates each with 
a surface charge Q = (y, 0) and a charge Q = (-2y, 0) inside. Equation (20) in den 
Nijs (1983), modified below for the condensator-type boundary condition, shows that 
the energy of this state is identical to that of an empty condensator without surface 
charges. This is a remarkable property of the short-range part of the interactions. 
The expressions for GcB and GCH derived below, (6) and (7), are similar to (27) in 
den Nijs (1983) for the spin-spin correlation function GH. GH(r),  GCB(r), and GCH(r) 
are the probabilities that the Q = (-2y, 0) bulk charge splits over a distance r into a 
Q=(n-y ,O) ,  a = ( - n - y , O )  pair, a Q = ( m - y , l ) ,  Q = ( - m - y , - l )  pair, and a 
Q = ( n  - y, l ) ,  Q = (-n - y, -1) pair respectively ( n  =odd, m =even). Q = (0 ,  V) rep- 
resents a vortex charge. 

At short distances the interactions in the Gaussian and the six-vertex Coulomb gas 
differ, but at large distances r, a pair Q =  (SI,  VI), Q = ( S 2 ,  V 2 )  contributes f12( r )=  
2[SlS2/(4x)+ VI V2x] log(r) to the free energy (see e.g. Kadanoff and Brown 1979); 
x = 2 - y  parametrises the critical line in the Potts model and plays the role of 
temperature in the six-vertex model. The exact solution of the Potts model at criticality 
(Baxter er a1 1976) gives the relation between x and the Gaussian inverse temperature 
K = x /  rr. This, together with the identification of the charges, implies the extended 
scaling relations (2) and (5). 

For details of notation and method see den Nijs (1983). First GDDGCB and G C H  

are rewritten in the random cluster model representation as expectation values of 
weight functions W,. W, is zero if s and s + ê  and/or s + r and s + r + 2 belong to the 
same cluster. Four types of graphs contribute: DD (all four sites belong to different 
clusters), DC (only s or s+e^ is connected with s + r  or s + r + i ? ) ,  cci (s is connected 
with s + r +  2 and s + e* with s + r ) ,  and cc2 (s is connected with s + r, and s + e* with 
s + r + e * ) .  W, = [ D D , D C , ~ C I , C C ~ ]  take the values: WDD=[(1-1/q)2, ( l - l / q ) 2 ,  1- 
l /q ,  1 - l /q] ,  wcB=[O, 0, l /q,  l/q], and WcH=[O, 0, l /q ,  - l /q].  WDD is equivalent 
to @DD, with WDD = 1 if the bond between s and s + e* and between s + r and s + r + e  ̂
are both absent, and l8’DD = 0 otherwise. 

The six-vertex representations for WcB and WcH are similar to the one for G H  in 
equation (21) of den Nijs (1983) 

path,  0 
(7) 

The paths intersect the arrows at the polygons; a = a( R, R’) = * 1 ,  with vertex R (R ’) 
to the right (left) of the path, represents the direction of the arrow. Oo,*l, with charge 
Q = (0, i l ) ,  are energy excitations of the eight-vertex model (Kadanoff and Brown 
1979). In (6) and (7) they restrict the graphs to type cci and cc2; the arrows are 
reversed along segments of two polygons, such that vertex R, between s and s + 2  
becomes a sink and R,+, a source of four arrows. The two string operators in (6) 
compensate, if polygons surrounding site 0 are excluded, for the error counting factors 
f i  introduced by this. Take 0 at the lattice boundary, and assume that along the 



Letter to the Editor U99 

boundary the interactions are infinitely strong. Now the charges are located inside a 
box of constant potential. The string operators represent charges Q = ( - y ,  0) at site 
s and s + r +  2, and a surface charge Q = ( 2 y ,  0). In (7) a charge Q = ( - 1 , O )  is added 
at site s and Q=( l ,O)  at s+r+i?,  because W,, is equal to l (-1) if s and s+r+e* 
do (not) belong to the same cluster. The charges are unique modulo Q = ( 2 , O )  (see 
also den Nijs (1983)). The higher-order representations of the charges are associated 
to the subdominant exponents. 

The box can be replaced by a condensator, which allows for groundstates with 
domain walls parallel to the plates, and is also useful in transfer matrix studies. Consider 
a cylinder of length T. Assume that at t = 0 and t = T the interactions between the 
Potts spins are infinitely strong. The phase factors fail to count factors f i  for open 
polygons, wrapped around the cylinder. Choose a site 0 at t = 0, a site 1 at t = T, and 
a path between them. The Potts model translates into the same six-vertex Coulomb 
gas as before, but subject to the new boundary condition, and the constraint that a 
charge Q = (-y, 0) is located at 0 and a charge Q = (y, 0) at 1. Since no polygon 
surrounds site 0, (20) in den Nijs (1983) remains valid. At criticality the condensator 
contains a single point charge Q = (-2y) and a surface charge Q = (y, 0) at both plates. 

The chiral operator in the Ashkin-Teller model has been reformulated into the 
eight-vertex language (Kohmoto et a1 1981) by Schultz (1984). OCH should be 
identified with a charge Q = (-1, l), which gives (3). In the very anisotropic limit the 
ANNNI model can be mapped into an eight-vertex model (see e.g. Emery and Peschel 
1981). The critical point where the model decouples into two Ising models, generalises 
into the Baxter line, when the core energy of dislocations is varied. Along the Baxter 
line OCH = 0:" has a charge Q = (2, i) (tables 1-11 in den Nijs 1981) which leads again 
to (3). 

Part of this research was carried out during the Summer Institute on Statistical 
Mechanics at the Einstein Center for Theoretical Physics, Weizmann Institute, Rehovot, 
Israel. It is a pleasure to thank Eytan Domany and David Mukamel for organising 
this meeting. This research was supported in part by the National Science Foundation 
under grant No. DMR79-20785. 

References 

Baxter R J, Kelland S B and Wu F Y 1976 J. Phys. A: Math. Gen. 9 397 
Baxter R J and Pearce P A 1982 J. Phys. A: Math. Gen. 15 897 
Black J and Emery V J 1981 Phys. Rev. B 23 429 
Bohr Th, Bak P and Haldane D 1984 Phys. Rev. B in press 
Chinn M D and Fain S C Jr 1977 Phys. Rev. Lett. 39, 146 
den Nijs M P M 1981 Phys. Rev. B 23 61 1 1  
- 1983 Phys. Rev. B 27 1674 
- 1984 in Phase transitions and Critical Phenomena ed C Domb and J Lebowitz (London: Academic) 

Domany E 1978 J. Phys. C: Solid Stare Phys. 11 L337 
Emery V J and Peschel I 1981 Z. Phys. B 43 241 
Howes S 1983 Phys. Rev. B 27 1762 
Howes S, Kadanoff L P and den Nijs M P M 1983 Nucl. Phys. B 215 169 
Huse D A 1984 J. Phys. A: Math. Gen. 17 
Huse D A and Fisher M E 1982 Phys. Rev. Lett. 49 793 
Imbihl R, Behm R J, Christmann K, Ertl G and Matsushima T 1982 Surf. Sci. 117 257 

in preparation 



L300 Letter to the Editor 

Jaubert M, Glachant A, Bienfait M and Baoto G 1981 Phys. Rev. Le??. 46 1679 
Kadanoff L P and Brown A 1979 Ann. Phys., NY 121 318 
Kohmoto M, den Nijs M P M and Kadanoff K P 1981 Phys. Rev. B 24 5229 
Nienhuis B 1982 J. Phys. A: Math. Gen. 5 199 
Ostlund S 1981 Phys. Rev. B 24 398 
Pokrovski V L and Talapov A L 1979 Phys. Rev. Leu. 42 65 
Schick M 1981 Prog. Surf. Sci. 11 245 
Schultz H 1984 Phys. Rev. B in press 
Stephens P, Heiney P A, Birgeneau R,  Horn P, Moncton D E and Brown G S 1983 Preprint 
Tejwani M J,  Feirreira 0 and Vilches 0 E 1980 Phys. Rev. Lee 44 152 
Villain J 1980 Surf. Sci. 97 219 


